Cosmic Shear Challenges

ANT THE DESTANT A FAME

Joe Zuntz. University College London

Finding the ellipticity of lots and lots of very small, very blurry, very noisy, objects that are hopefully galaxies with essentially zero bias

Joe Zuntz. University College London

Overview

- The physics and cosmology of cosmic shear
- Why measuring shear is very hard
- Our model-fitting approach
- Challenges to model-fitters

The science goal

- Percent-level measurements of w(z) and modified-gravity measurements
- From structure growth and geometric distance

A Map of the Dark Universe

CFHTLenS: Heymans et al

 Everyone familiar with single object lensing

 Everyone familiar with single object lensing

source $s(\theta)$

image

 $f(\boldsymbol{\theta})$

350

• see Hoekstra & Jain for introduction

The cosmology of lensing

$$\frac{1}{2}k^2\Psi = \int_0^\infty \mathrm{d}\chi \ W(\chi)P(\chi,\chi\theta)$$

$$W(\chi) = \frac{3}{2} \Omega_m H_0^2 \chi a^{-1} \int_{\chi}^{\infty} d\chi_s \ n(\chi_s) \ \frac{\chi_s - \chi}{\chi_s}$$

The cosmology of lensing

Shear

Images: Bridle et al 2008

Shear + Point-spread

Shear + point-spread + pixelization

Shear + point-spread + pixelization + noise

Requirements

 How well do we have to do this? Taylor expand our estimates:

 $\hat{\gamma_i} \approx (1+m_i)\gamma_i + c_i$

• Then we require for upcoming experiments: $m_i < 4 \cdot 10^{-3}$ $c_i < 6 \cdot 10^{-4}$

Some approaches

Estimators - quadrupole moments, KSB
Shapelets and other simple fits
Other methods
Modelling methods

Modelling Galaxies

 Forward modelling methods: fit parameters (including ellipticity)

• A maxim:

"Don't model your data. Model the process that led to your data"

MALLAR. MAY

Exponential Disc

aller - Service Te A fee

 $\exp - \left(x^T M x\right)^{\frac{1}{2}}$

De Vaucouleurs Bulge

 $\exp - \left(x^T M x\right)^{\frac{1}{8}}$

The later was to me we constant the second to the second with the second as the second

Parameter	Meaning	Fixed
x_0	Horizontal centroid	
y_0	Vertical centroid	
e_1	x-y shear	
e_2	45° shear	
r_d	Disc half-light radius	
A_b	Bulge peak flux	
A_d	Disc peak flux	
R_r	Bulge-disc size ratio	~
n_d	Disc Sérsic index	~
n_b	Bulge Sérsic index	1
Δe	Bulge-disc ellipticity	\checkmark
$\Delta heta$	Bulge-disc angle	~

Im3Shape

Reimagining of Bridle im2shape code
Forward-model ML method
Optimized but pleasant C code
Flexible: Very easy to add components

Known Biases

stand & Adver

- It shows and the

Resolution bias
Model bias
Noise bias

Resolution Bias

- True model has infinite resolution
- Matter most for sharp bulges
- Central pixel double upsampling

Resolution Bias: Sharp Centers

Central Pixel Upsampling

Central Pixel Upsampling

Central Pixel Upsampling

How much area is higher res?

Model bias

- When you fit an "incorrect" model to the data
- e.g.
 - Different profiles
 Off-centering
 Radius ratio

Model Bias:

Model bias: Component ei

Model bias: Component ei

Noise bias

- Mean of ML ≠ ML of Mean
- Combining galaxies
 we should multiply
 PDFs
- Nonlinear dependence of pixels on ellipticity

Noise Bias: Origin

Allowed a . Asta

ALC: NOT BE

Carlan Mallin is Torn o

Noise Bias: Origin

Refrigier et al 2012
Kacprzak et al 2012

$$b[\hat{a}_i] = -\frac{1}{2} (F^{-1})_{ij} (F^{-1})_{kl} B_{jkl} + O(\rho^{-4})$$

$$B_{ijk} = \left\langle -\frac{1}{2} \frac{\partial^3 \ln L}{\partial a_i \partial a_j \partial a_k} + \frac{\partial \ln L}{\partial a_j} \frac{\partial^2 \ln L}{\partial a_i \partial a_k} \right\rangle$$

Some fun facts

JANA A ANTAS

Calibrating noise bias

- Calibrate with simulations over
 relevant parameters
- Apply with polynomial fit
- "Bias-on-bias"
 problem

Dodging noise bias?

- Can we avoid noise bias altogether?
 Samples from P(e|I)
- Requires prior information and power spectrum estimation that can cope

Summary

- We are about to release a shear-measurement code called *Im3shape* which fits bulge+disc galaxy models to images
- Resolution bias pushes us to high model resolution requirements, especially at image centers
- Model biases are not quite enough to worry us yet
- Noise bias is very significant to ML methods but can be calibrated

Unanswered Question

J'MARTA & MANY

• How do the different biases interact?